The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis.

نویسندگان

  • Rajamani Gounder
  • Enrique Iglesia
چکیده

Acidic zeolites are indispensable catalysts in the petrochemical industry because they select reactants and their chemical pathways based on size and shape. Voids of molecular dimensions confine reactive intermediates and transition states that mediate chemical reactions, stabilizing them by van der Waals interactions. This behavior is reminiscent of the solvation effects prevalent within enzyme pockets and has analogous consequences for catalytic specificity. Voids provide the "right fit" for certain transition states, reflected in their lower free energies, thus extending the catalytic diversity of zeolites well beyond simple size discrimination. This catalytic diversity is even more remarkable because acid strength is essentially unaffected by confinement among known crystalline aluminosilicates. In this Account, we discuss factors that determine the "right fit" for a specific chemical reaction, exploring predictive criteria that extend the prevailing discourse based on size and shape. We link the structures of reactants, transition states, and confining voids to chemical reactivity and selectivity. Confinement mediates enthalpy-entropy compromises that determine the Gibbs free energies of transition states and relevant reactants; these activation free energies determine turnover rates via transition state theory. At low temperatures (400-500 K), dimethyl ether carbonylation occurs with high specificity within small eight-membered ring (8-MR) voids in FER and MOR zeolite structures, but at undetectable rates within larger voids (MFI, BEA, FAU, and SiO(2)-Al(2)O(3)). More effective van der Waals stabilization within 8-MR voids leads to lower ion-pair enthalpies but also lower entropies; taken together, carbonylation activation free energies are lower within 8-MR voids. The "right fit" is a "tight fit" at low temperatures, a consequence of how temperature appears in the defining equation for Gibbs free energy. In contrast, entropy effects dominate in high-temperature alkane activation (700-800 K), for which the "right fit" becomes a "loose fit". Alkane activation turnovers are still faster on 8-MR MOR protons because these transition states are confined only partially within shallow 8-MR pockets; they retain higher entropies than ion-pairs fully confined within 12-MR channels at the expense of enthalpic stability. Selectivities for n-alkane dehydrogenation (relative to cracking) and isoalkane cracking (relative to dehydrogenation) are higher on 8-MR than 12-MR sites because partial confinement preferentially stabilizes looser ion-pair structures; these structures occur later along reaction coordinates and are higher in energy, consistent with Marcus theory for charge-transfer reactions. Enthalpy differences between cracking and dehydrogenation ion-pairs for a given reactant are independent of zeolite structure (FAU, FER, MFI, or MOR) and predominantly reflect the different gas-phase proton affinities of alkane C-C and C-H bonds, as expected from Born-Haber thermochemical cycles. These thermochemical relations, together with statistical mechanics-based treatments, predict that rotational entropy differences between intact reactants and ion-pair transition states cause intrinsic cracking rates to increase with n-alkane size. Through these illustrative examples, we highlight the effects of reactant and catalyst structures on ion-pair transition state enthalpies and entropies. Our discussion underscores the role of temperature in mediating enthalpic and entropic contributions to free energies and, in turn, to rates and selectivities in zeolite acid catalysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tailoring nanoscopic confines to maximize catalytic activity of hydronium ions

Acid catalysis by hydronium ions is ubiquitous in aqueous-phase organic reactions. Here we show that hydronium ion catalysis, exemplified by intramolecular dehydration of cyclohexanol, is markedly influenced by steric constraints, yielding turnover rates that increase by up to two orders of magnitude in tight confines relative to an aqueous solution of a Brønsted acid. The higher activities in ...

متن کامل

A Thermodynamic Study of the Interaction between Urease and Copper Ions

A thermodynamic study of copper ions by jack bean urease (JBU) was carried out at two temperatures of 27 and 37?C in Tris buffer (30 mM; pH=7.0) using an isothermal titration calorimetry. There is a set of twelve identical and non-interacting binding sites for copper ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 285 µM and ?15.2 kJ/mol at 27?C and 3...

متن کامل

Theoretical thermodynamic study on the interaction between Fe2+ ion and Pyrazole

The interaction of Fe2+ ion with Pyrazole was theoretically studied by Gussian 03, software at HF/(LanL2DZ+6-31G) and HF/ (LanL2DZ+6-31G (d)) levels in gas phase and solution. In this study acompartion between optimized structures of Pyrazole molecule in aspect of thermodynamicparameters such as enthalpy (H°), Gibbs free energy (G°) and entropy (S°) in presence of metallic ion(Fe2+), was perfor...

متن کامل

SPECTROPHOTOMETRIC STUDY OF THE THERMODYNAMICS AND KINETICS OF CHARGE-TRANSFER COMPLEXATION OF DIBENZO- 18-CROWN-6 WITH IODINE IN CHLOROFORM SOLUTION

The charge-transfer complexation reaction between iodine and dibenzo- 18-crown- 6 (DB18C6) has been studied spectrophotometrically in chloroform solution at different temperatures. The resulting donor-acceptor complex was formulated as (DB 18C6…I )I . The spectrophotometric results , as well as the conductivity measurements, indicated that the gradual release of tiiodide ion from its contac...

متن کامل

Synthesis, Characterization and interaction Studies of 1-(3-bromophenyl azo) 2,7-dihydroxy naphthalene, (BPADHN) with calf thymus deoxy ribo nucleic acid (ct-DNA)

In this study at first , an azo dye, 2,7- naphthalenediol, 2-[(4-Bromophenyl)azo (BPAND) as a ligand has been synthesized by addition of p-Bromoaniline to the modified montomorillonite K10 clay. This ligand was characterized using 1H-NMR, UV-Vis and IR spectroscopies. Subsequently, its interaction with calf thymus deoxyribonucleicacid ,ct-DNA was investigated in 5 mM phosphate buffer solution, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accounts of chemical research

دوره 45 2  شماره 

صفحات  -

تاریخ انتشار 2012